

Enertec/BAS Corporation

628 Plymouth St. SW, Olympia, WA 98502 Phone (360) 943-2952, Fax (360) 352-4112 www.enertec-bas.com

Application Note 016 - CFM Monitoring and Control

Overview of Setup for CFM Monitoring and Control with BAS

To design and configure a BAS site for CFM control (each of the following steps are described in greater detail later in this Application Note):

- 1. Select an appropriate differential pressure transducer.
- 2. Calculate a BAS Constant (BASk) factor for the selected transducer.
- 3. Determine a CFM Constant (CFMk) factor for each VAV/VariZone box size and model.
- 4. Enter the BASk factor in the BAS system configuration using System / Site Configure / VAV/VariZone Settings
- 5. For each Zone with CFM control:
 - a. Select Zone / Configure and then Sensors.
 - b. Configure the Sensor Scaling at the appropriate Analog Input as CFM Sensor.
 - c. Select the input range as 0-5 VDC (always select 0-5 VDC).
 - d. Select Ok and then Actuators.
 - e. Select the Pressure Independent option.
 - f. Enter the CFM Constant.
 - g. Enter the CFM Offset (in either Volts or Bits).
 - h. Select the CFM Min and Max values nearest to the design Min and Max.
 - i. Select Ok and then Ok again to save the Zone configuration.
 - j. If necessary, each Zone's CFM Constant may be adjusted slightly up or down so that the CFM reading matches the CFM measurements from the system air balance. Any adjustments more than +/-10% from the design CFM Constant should be investigated.

Selecting a Differential Pressure Transducer Range

First check each Zone to locate the worst case zone with the highest primary air velocity/velocity pressure. The velocity pressure can be found using a chart provided by the VAV box manufacturer to locate the velocity pressure that corresponds to the maximum design CFM for that Zone. Typically the maximum velocity pressure will not exceed 1" wc and rarely exceeds 1.5" wc. The low end of the range for the selected transducer should always be 0" wc.

All sensors at the site must be the same range and output (see Calculating a BAS Constant Factor below). To provide the maximum possible CFM resolution, select a transducer with the lowest possible pressure range that can still read the worst case velocity pressure. A transducer with a 0-1" wc range will provide a signal with 1.4 times the resolution of a 0-2" wc transducer.

Selecting a Differential Pressure Transducer Output

The transducer output is often determined by a combination of the manufacturer, supplier, availability, and cost. The output will affect the resolution, so if the output is optional select an output that provides the best possible resolution. The outputs below are listed in order from highest to lowest resolution.

- 1. 0-5 VDC / 0-10 VDC (best resolution)
- 0.5-4.5 VDC / 1-5 VDC / 2-10 VDC (around 10% loss of resolution compared to 0-5 VDC)
- 3. 4-20 mA (around 20% loss of resolution compared to 0-5 VDC)

Calculating a BAS Constant Factor (BASk)

The BASk factor defines the sensor range and output for the system and is used by the system, along with the CFMk factor, to convert the reading from the pressure transducer to a CFM value. There is only a single BASk factor that can be configured at each site, so all pressure transducers must use a combination of pressure range and output that results in the same BASk factor.

The BAS system default setting for the BASk factor is 746. This value is based on use of a pressure transducer with a range of 0-1" wc and an output of 4-20 mA. If using any other range and/or output, the new BASk factor must be calculated and configured in the system.

The smaller the BASk factor the better the resolution of the CFM readings. Lower transducer pressure ranges provide lower BASk factors and better resolution. Higher voltage output spans also provide lower BASk factors and better resolution.

The BASk factor can be calculated using a worksheet found in the EZ Dealer Excel workbook or by using the formula below:

BASk = 1400 x VPmax Vspan

VPmax is the maximum velocity pressure (in "wc) that can be read by the transducer. **Vspan** is the total span (in VDC) of the transducer's output.

Vspan values for various typical transducers:

Output	Vspan (VDC)							
0-5 VDC	5							
0-10 VDC	5							
0.5-4.5 VDC	4							
1-5 VDC	4							
2-10 VDC	4							
4-20 mA	3.52							

Determining a Zone's CFM Constant Factor (CFMk)

The CFMk factor is an industry standard term and is used to convert a velocity pressure reading into a CFM value. It is defined by the VAV box size and differential pressure signal multiplier. The CFMk factor is always equal to the CFM that will cause the factory installed flow ring/velocity pressure pickup to generate a velocity pressure of 1" wc.

Most VAV box manufacturers will improve sensitivity of CFM readings by designing the flow ring/velocity pressure pickup so that it amplifies the velocity pressure reading. This multiplier is specific to each manufacturer and box model and if needed should be available from the manufacturer. It will typically range from about 1.2 to 4.0. If the differential pressure reading is provided by a standard pitot tube, there is no amplification and the multiplier is 1.0.

The CFMk factor can be determined one of three ways:

- 1. If available, always use the CFMk factor provided by the VAV box and/or air flow pick-up tube manufacturer.
- 2. If a CFM chart is available for the VAV box, use the chart to find the CFM equal to a differential pressure output of 1.0" wc. CFMk is the same as the CFM when at 1.0" wc.
- 3. Calculate the CFMk factor using a worksheet found in the EZ Dealer Excel workbook or by using the formula below. This method should not be used unless the flow ring/velocity pressure pickup multiplier is known. If the multiplier is unknown and this is the only option, use a value of 1.6 for the multiplier to calculate an initial CFMk and then adjust the CFMk as necessary to match the air balance results.

 $CFMk = \frac{4005 \times A}{Mult}$

A is the area in square feet of the cross section of the primary duct at the location of the flow ring/pressure pickup tubes.

Mult is differential pressure signal multiplier built into the flow ring/pressure pickup tube.

CFM Calculations

Once the BASk and CFMk factors have been determined and entered into the system, BAS calculates Zone CFM readings using the following formula:

 $BAS CFM = \frac{BASk x CFMk x \sqrt{AIr - OFS}}{10,000}$

Alr is the unscaled (raw) input for the analog input defined as a CFM sensor for the Zone and will be between 0-255.

OFS is the CFM sensor offset, in Bits, previously entered in the Zone configuration.

The CFM can also be manually calculated using the following standard formula:

 $CFM = \frac{4005 \text{ x } \sqrt{VP} \text{ x } A}{Mult}$

VP is the velocity pressure reading (in " wc) from the flow ring/pressure pickup tube. **A** is the area in square feet of the cross section of the primary duct.

Mult is differential pressure signal multiplier built into the flow ring/pressure pickup tube.

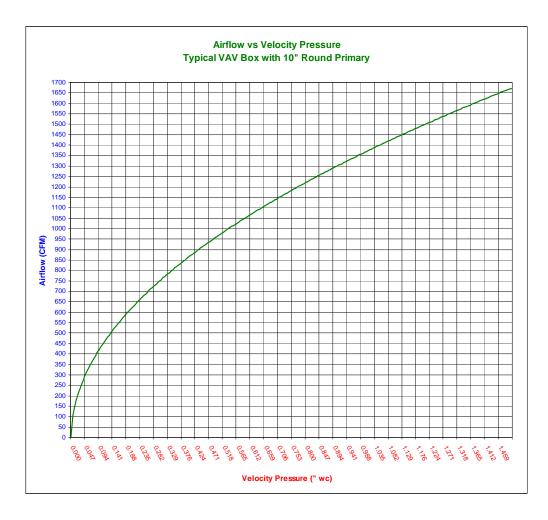
Factors Affecting the Accuracy of CFM Monitoring and Control

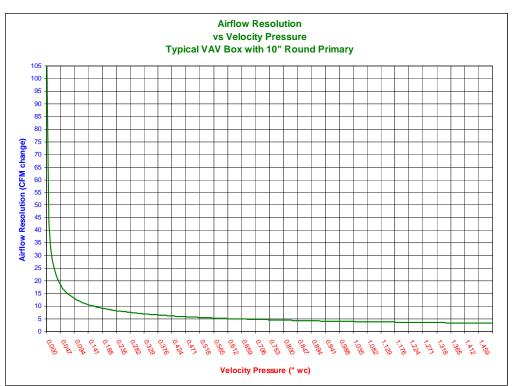
The accuracy of control and resolution of CFM readings are affected by both the range and the output of the pressure transducer being used, and by the design of the HVAC system. Use the criteria described previously to select a transducer with the range and output that provides the best CFM control. A chart is also attached at the end of this Application Note with data showing the resolution of various pressure transducer range and output combinations to help in transducer selection.

The selection of the appropriate VAV box for each Zone is typically done by a design engineer without input from the control system installer. Most engineers will select a VAV box at least one or two sizes bigger than is needed for the design maximum CFM for the Zone. This causes the box to operate near the low end of the box's capacity.

The nature of velocity pressure (also commonly referred to as differential pressure) is that it takes a much larger change in CFM to make the same change in velocity pressure at the low end of the box capacity than at the high end. For example, a typical pressure transducer with a range of 0-1" wc and a 0-5 VDC output has a resolution of 0.00392" wc. For a typical 10" round VAV box, it takes a change of 12 CFM to generate a change in velocity pressure of 0.00392" wc at the low end of its operating range. This same box at the upper end of its operating range will only require a change of 1 CFM to generate the same 0.00392" wc change in velocity pressure.

In this example the control of CFM is 12 times more accurate and sensitive when operating near the high end of the box's capacity than when at the low end. See the charts at the end of this Application Note for additional details on velocity pressure vs CFM. Whenever possible, the control system installer should encourage the design engineer to select the smallest size box that can provide the maximum design CFM for that Zone.

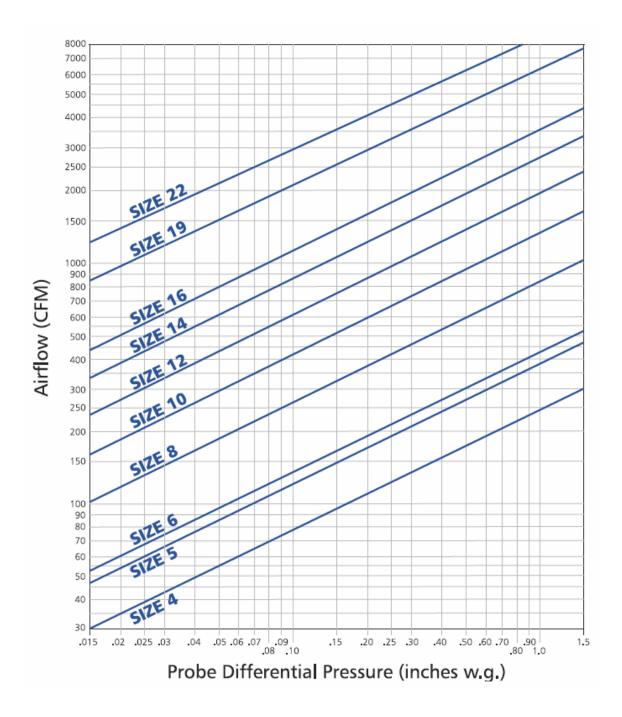

Optimum Operating Range for CFM Control of a VAV Box


These two charts plot velocity pressure vs total airflow and velocity pressure vs airflow resolution. This example is based on a VAV box with a 10" round primary and a CFMk factor of 1365, but is valid for any VAV box size. The box has a maximum airflow capacity of 1670 CFM with a corresponding velocity pressure of 1.5" wc.

The first chart shows that when airflow is below about 300 CFM (velocity pressure of 0.049" wc), or 18% of rated capacity, an increasingly large change in CFM is required to the produce a measurable change in velocity pressure. The next chart also shows that below this same point the resolution, or smallest change that it is possible to see, becomes very large. The charts also show that the highest resolution and control of CFM is at or above about 835 CFM (velocity pressure of 0.373" wc), or 50% of rated capacity.

Therefore, as these two charts show:

- 1. The most accurate control of CFM is achieved when a VAV box is operating between 50-100% of its rated capacity.
- 2. Less accurate but still acceptable control of CFM can be achieved when a VAV box is operating between 18-50% of its rated capacity.
- 3. Accurate control is very difficult when a VAV box is operating below 18% of its rated capacity and CFM readings are meaningless below 10% of its rated capacity (velocity pressure of 0.015" wc).



Enertec/BAS Corporation														
•		eadings using Various Static Pres		naduaa	r Banga	and O	utputo							
		adings using various static Fres			Ŭ		·							
Pressure Sensor Defi	nition	Output Min (VDC)	0 -> : 0	5 VDC O		0.5 -> 4 0.5	4.5 VDC 0.5	Output 0.5	<u>1-> </u>	5 VDC 0	utput 1	<u>4 -> 2</u> 0.88	20 mA O 0.88	utput 0.88
		Output Max (VDC)	5	5	5	4.5	4.5	4.5	5	5		4.4	4.4	4.4
		Press Max (" wc) BAS-k	1 626		2 886	1 700	1.5 857	2 990	1 700	1.5 857	2 990	1 746	1.5 914	2 1056
		Offset Volts	0		0	0.5	0.5	0.5	1		1	0.88	0.88	0.88
		Offset Bits # of Steps	0 256		256	26 205	26 205	26 205	51 205	51 205	51 205	45 180	45 180	45 180
Typical 6" Primary - CFM-k=	491	Lo Limit CFM	31	38	44	34	42	49	34	42	49	37	45	52
	431	Resolution at Lo Limit CFM	12	15	18	15	18	20	15	18	20	15	18	21
	<u> </u>	Minimum Position / 20% CFM Resolution at 20% CFM	98 5	121 5	139 7	98 6	120 8	139 8	98 6	120 8		98 7	120 9	139 9
		Mid-Range CFM	348	426	492	348	426	492	348	426		347	426	492
		Resolution at Mid-Range CFM Hi Limit CFM	2 491	2 601	2 695	2 491	2 601	2 694	2 491	2 601	694	490	3 600	694
		Resolution at Hi Limit CFM	1	1	2	1	1	1	1	1	1	1	1	2
Typical 8" Primary - CFM-k=	875	Lo Limit CFM	55		78	61	75	87	61	75	87	65	80	92
		Resolution at Lo Limit CFM Minimum Position / 20% CFM	22 175		32 248	26 175	31 215	36 248	26 175	31 215	36	27 175	33 215	39 248
		Resolution at 20% CFM	9	10	12	11	12	15	11	12	15	12	14	17
		Mid-Range CFM Resolution at Mid-Range CFM	620 3		877 3	620 3	759	877 4	620 3		877 4	<u>619</u> 3	759 5	<u>877</u> 5
		Hi Limit CFM Resolution at Hi Limit CFM	875	1072	1238	875	1071	1237	875	1071	1237	873	1070	1236
			2	2	2	2	3	3	2	3	3	2	3	3
Typical 10" Primary - CFM-k=	1365	Lo Limit CFM Resolution at Lo Limit CFM	85 36		121 50	96 39	117 48	135 56	96 39	117 48	135 56	102 42	125 51	144 60
		Minimum Position / 20% CFM	273	335	387	274	335	387	274	335	387	273	335	387
		Resolution at 20% CFM Mid-Range CFM	13 967	16 1184	18 1368	16 967	20 1184	23 1368	16 967	20 1184	23 1368	19 966	22 1184	26 1367
		Resolution at Mid-Range CFM	4	4	5	4	5	7	4	5	7	5	7	7
	<u> </u>	Hi Limit CFM Resolution at Hi Limit CFM	1365 3	1672 3	1931 4	1365 4	1671 4	1930 5	1365 4	1671 4	1930 5	<u>1362</u> 3	1669 4	<u>1929</u> 6
Turning 140" Drimony CEM k	4050		400		470	407	407	100	407	407	400		470	000
Typical 12" Primary - CFM-k=	1950	Resolution at Lo Limit CFM	122 51	150 62	173 71	137 56	167 69	193 80	<u>137</u> 56	167 69	193 80	145 61	178 74	206 85
		Minimum Position / 20% CFM Resolution at 20% CFM	391 18	479 22	553 26	391 23	479 28	553 33	391 23	479 28	553 33	390 27	478 32	553 37
		Mid-Range CFM	1381	1692	1955	1382	1692	1954	1382	1692	1954	1380	1691	1954
	<u> </u>	Resolution at Mid-Range CFM Hi Limit CFM	5 1949		8 2759	7 1950	8 2387	9 2757	7 1950	8 2387	9 2757	8 1946	10 2385	11 2755
		Resolution at Hi Limit CFM	4	4	5	5	6	6	5	6	6	5	7	8
Typical 14" Primary - CFM-k=	2676	Lo Limit CFM	168	205	237	187	229	265	187	229	265	200	245	283
	!	Resolution at Lo Limit CFM Minimum Position / 20% CFM	69 536		98 759	78 536	95 657	110 759	78 536		110 759	82 536	101 656	<u>117</u> 758
		Resolution at 20% CFM	26	31	36	32	39	45	32	39	45	36	44	51
		Mid-Range CFM Resolution at Mid-Range CFM	1895 7	2322 9	2682 10	1896 9	2322 12	2682 13	1896 9			1894 11	2320 13	2681 15
		Hi Limit CFM Resolution at Hi Limit CFM		3278	3786	2675	3276	3784	2675	3276	3784	2671	3272	3781
			5		7	6		9	6			8		
Typical 16" Primary - CFM-k=	3495	Lo Limit CFM Resolution at Lo Limit CFM	219 90		310 128	245 101	300 124	346 143	245 101	300 124	346 143	261 108	319 133	369 153
		Minimum Position / 20% CFM	700	858	991	701	858	991	701	858	991	700	857	990
		Resolution at 20% CFM Mid-Range CFM	34 2475		47 3503	41 2477	50 3032	58 3503	41 2477	50 3032		47 2473	58 3031	67 3501
		Resolution at Mid-Range CFM Hi Limit CFM	9 3494		13 4945	12 3494	14 4278	17 4942	12 3494		17 4942	13 3488	17 4274	19 4938
		Resolution at Hi Limit CFM				3494 8		4942	3494 8			3466 9		4936
	<u> </u>													
	<u> </u>	Description for each parameter s				10 1	ducer	000 4k -	iffore - /')"		
		Output Min (VDC) Output Max (VDC)	The ou					hen the d					n	
	<u> </u>	Press Max (" wc) BAS-k						of the pr ure trans					nge	
		Offset Volts	The pr	essure tr	ransduce	er output	at 0 CFM	A (always	the sar	ne value	as Outp	ut Min).	Ť	
	<u> </u>	Offset Bits # of Steps						nput that ution) for						er.
		· · ·						, í						
	<u> </u>	Lo Limit CFM Resolution at Lo Limit CFM						be read seen at			nge/outp	ut comb	nation.	
	<u> </u>	Minimum Position / 20% CFM Resolution at 20% CFM	Typica	l Minimu	m CFM o	configura	ation - 20	% of Hi L seen at	imit CF	M.				
	───									171.				
		Mid-Range CFM			control r									
		Resolution at Mid-Range CFM Hi Limit CFM	The sr	nallest cl	hange in	CFM that	at can be	seen at	Mid-Rar			out com	pination	

Typical VAV Box CFM Airflow Chart

This airflow chart is for VAV boxes manufactured by Enviro-Tec, but is typical for CFM vs velocity pressure found on VAV boxes from most manufacturers.

Note that the chart does not include CFM values for velocity pressures below 0.015" wc, or about 10% of the rated CFM capacity of the box.

